In my UCL Galaxy Dynamics course (PHAS0065), I struggled with
the derivation of the Noether theorem for quite a while. What I
present here is just a step-by-step solution of the treatment
given in Dr Ralph Schönrich's lecture notes of PHAS0065. This
treatment is in the German theoretical physics tradition, and is
particularly contained in "Mechanik: Lehrbuch zur Theoretischen
Physik" by Torsten Fließbach.
All errors in this solution are my own.
Consider a dynamical system with generalised space coordinates
q ‾ ∈ R i \underline{q}\in\mathbb{R}^i q ∈ R i , a time coordinate t t t and an associated
Lagrangian L L L . Let there be two perturbing maps of the form
∣ q ‾ ′ : = q ‾ + λ ψ ‾ ( q ‾ , q ˙ ‾ , t ) t ′ : = t + λ ϕ ( q ‾ , q ˙ ‾ , t ) \left|\begin{array}{l} \underline{q}':=
\underline{q}+\lambda\underline{\psi}(\underline{q},\underline{\dot{q}},t)\\[1ex]
t':=
t+\lambda\phi(\underline{q},\underline{\dot{q}},t)
\end{array}\right. q ′ := q + λ ψ ( q , q ˙ , t ) t ′ := t + λ ϕ ( q , q ˙ , t )
with λ ∈ R \lambda \in \mathbb{R} λ ∈ R . We require symmetry of action:
∫ t 1 t 2 L ( q ‾ , q ˙ ‾ , t ) d t = ∫ t 1 t 2 L ( q ‾ ′ , q ˙ ‾ ′ , t ′ ) d t ′ , \int^{t_2}_{t_1} L \left(
\underline{q},\underline{\dot{q}},t
\right)\mathrm{d}t
=
\int^{t_2}_{t_1} L \left(
\underline{q}',\underline{\dot{q}}',t'
\right)\mathrm{d}t', ∫ t 1 t 2 L ( q , q ˙ , t ) d t = ∫ t 1 t 2 L ( q ′ , q ˙ ′ , t ′ ) d t ′ ,
where we define q ˙ ‾ ′ : = d q ‾ ′ / d t ′ \underline{\dot{q}}':=\mathrm{d}\underline{q}'/\mathrm{d}t' q ˙ ′ := d q ′ / d t ′ for
the rest of the derivation. Taylor-expanding the right-hand side gives
∫ t 1 t 2 L ( q ‾ , q ˙ ‾ , t ) d t = ∫ t 1 t 2 L ( q ‾ , q ˙ ‾ , t ) d t + λ ∫ t 1 t 2 d d λ [ L ( q ‾ ′ , q ˙ ‾ ′ , t ′ ) × d t ′ d t ] λ = 0 d t + O ( λ 2 ) , \cancel{\int^{t_2}_{t_1} L \left(
\underline{q},\underline{\dot{q}},t
\right)\mathrm{d}t}
=
\cancel{\int^{t_2}_{t_1} L \left(
\underline{q},\underline{\dot{q}},t
\right)\mathrm{d}t} +
\lambda \int^{t_2}_{t_1}
\frac{\mathrm{d}}{\mathrm{d}\lambda} \left[
L \left(
\underline{q}',\underline{\dot{q}}',t'
\right)\times\frac{\mathrm{d}t'}{\mathrm{d}t}
\right]_{\lambda=0}\mathrm{d}t +
\mathcal{O}(\lambda^2), ∫ t 1 t 2 L ( q , q ˙ , t ) d t = ∫ t 1 t 2 L ( q , q ˙ , t ) d t + λ ∫ t 1 t 2 d λ d [ L ( q ′ , q ˙ ′ , t ′ ) × d t d t ′ ] λ = 0 d t + O ( λ 2 ) ,
which holds for all λ \lambda λ if and only if
0 = { d d λ [ L ( q ‾ ′ , q ˙ ‾ ′ , t ′ ) × d t ′ d t ] } λ = 0 . 0 = \left\{
\frac{\mathrm{d}}{\mathrm{d}\lambda}
\left[
L \left(
\underline{q}',\underline{\dot{q}}',t'
\right)\times\frac{\mathrm{d}t'}{\mathrm{d}t}
\right]
\right\}_{\lambda=0}. 0 = { d λ d [ L ( q ′ , q ˙ ′ , t ′ ) × d t d t ′ ] } λ = 0 .
From the definition of t ′ t' t ′ ,
d t ′ d t = 1 + λ d ϕ d t , \frac{\mathrm{d}t'}{\mathrm{d}t} =
1+\lambda\frac{\mathrm{d}\phi}{\mathrm{d}t}, d t d t ′ = 1 + λ d t d ϕ ,
which further reduces the action equation to
0 = { d d λ [ L ( 1 + λ d ϕ d t ) ] } λ = 0 = { d L d λ ( 1 + λ d ϕ d t ) + L d ϕ d t } λ = 0 . \begin{aligned}
0 &= \left\{
\frac{\mathrm{d}}{\mathrm{d}\lambda}
\left[
L\left(
1+\lambda\frac{\mathrm{d}\phi}{\mathrm{d}t}
\right)
\right]
\right\}_{\lambda=0}\\[3ex]
&= \left\{
\frac{\mathrm{d}L}{\mathrm{d}\lambda}\left(
1+\lambda\frac{\mathrm{d}\phi}{\mathrm{d}t}
\right) +
L \frac{\mathrm{d}\phi}{\mathrm{d}t}
\right\}_{\lambda=0}.
\end{aligned} 0 = { d λ d [ L ( 1 + λ d t d ϕ ) ] } λ = 0 = { d λ d L ( 1 + λ d t d ϕ ) + L d t d ϕ } λ = 0 .
We then expand d L / d λ \mathrm{d}L/\mathrm{d}\lambda d L / d λ by the chain rule,
keeping in mind that the Lagrangian is a function of the perturbed
coordinates:
0 = { [ ∑ i ∂ L ∂ q i ′ d q i ′ d λ + ∑ i ∂ L ∂ q ˙ i ′ d q ˙ i ′ d λ + ∂ L ∂ t ′ d t ′ d λ + ∂ L ∂ λ ] ( 1 + λ d ϕ d t ) + L d ϕ d t } λ = 0 = { [ ∑ i ∂ L ∂ q i ′ ψ i + ∑ i ( ∂ L ∂ q ˙ i ′ × d d λ d q i ′ d t ′ ) + ∂ L ∂ t ′ ϕ ] ( 1 + λ d ϕ d t ) + L d ϕ d t } λ = 0 , \begin{aligned}
0 &= \left\{
\left[
\sum_i
\frac{\partial L}{\partial q'_i}
\frac{\mathrm{d} q'_i}{\mathrm{d} \lambda} +
\sum_i
\frac{\partial L}{\partial \dot{q}'_i}
\frac{\mathrm{d} \dot{q}'_i}{\mathrm{d} \lambda} +
\frac{\partial L}{\partial t'}
\frac{\mathrm{d} t'}{\mathrm{d} \lambda} +
\cancel{
\frac{\partial L}{\partial \lambda}
}
\right]
\left(
1+\lambda\frac{\mathrm{d}\phi}{\mathrm{d}t}
\right) +
L \frac{\mathrm{d}\phi}{\mathrm{d}t}
\right\}_{\lambda=0}\\[3ex]
&= \left\{
\left[
\sum_i
\frac{\partial L}{\partial q'_i}
\psi_i +
\sum_i \left(
\frac{\partial L}{\partial \dot{q}'_i} \times
\frac{\mathrm{d}}{\mathrm{d} \lambda}
\frac{\mathrm{d}q'_i}{\mathrm{d} t'}
\right) +
\frac{\partial L}{\partial t'}
\phi
\right]
\left(
1+\lambda\frac{\mathrm{d}\phi}{\mathrm{d}t}
\right) +
L \frac{\mathrm{d}\phi}{\mathrm{d}t}
\right\}_{\lambda=0},
\end{aligned} 0 = { [ i ∑ ∂ q i ′ ∂ L d λ d q i ′ + i ∑ ∂ q ˙ i ′ ∂ L d λ d q ˙ i ′ + ∂ t ′ ∂ L d λ d t ′ + ∂ λ ∂ L ] ( 1 + λ d t d ϕ ) + L d t d ϕ } λ = 0 = { [ i ∑ ∂ q i ′ ∂ L ψ i + i ∑ ( ∂ q ˙ i ′ ∂ L × d λ d d t ′ d q i ′ ) + ∂ t ′ ∂ L ϕ ] ( 1 + λ d t d ϕ ) + L d t d ϕ } λ = 0 ,
where in the first line ∂ L / ∂ λ \partial L/\partial \lambda ∂ L / ∂ λ vanishes, since
L L L is unperturbed; and in the second line we used the definitions of
q i ′ q'_i q i ′ , q ˙ i ′ \dot{q}'_i q ˙ i ′ and t ′ t' t ′ . We now make the
following approximations:
While the fourth-line approximation is the standard binomial
approximation ,
the second-line one (i.e. the act of “flipping” the derivative) is
dubious ,
and I leave it with no formal justification.
d q i ′ d t ′ = d q i ′ d t d t d t ′ ≈ d q i ′ d t ( d t ′ d t ) − 1 = ( d q i d t + λ d ψ i d t ) ( 1 + λ d ϕ d t ) − 1 ≈ ( d q i d t + λ d ψ i d t ) ( 1 − λ d ϕ d t ) . \begin{aligned}
\frac{\mathrm{d}q_i'}{\mathrm{d}t'} &=
\frac{\mathrm{d}q_i'}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}t'}\\[2ex]
&\approx \frac{\mathrm{d}q_i'}{\mathrm{d}t} \left(
\frac{\mathrm{d}t'}{\mathrm{d}t}
\right)^{-1}\\[2ex]
&=
\left(
\frac{\mathrm{d}q_i}{\mathrm{d}t} +
\lambda\frac{\mathrm{d}\psi_i}{\mathrm{d}t}
\right)
\left(
1 +
\lambda\frac{\mathrm{d}\phi}{\mathrm{d}t}
\right)^{-1}\\[2ex]
&\approx
\left(
\frac{\mathrm{d}q_i}{\mathrm{d}t} +
\lambda\frac{\mathrm{d}\psi_i}{\mathrm{d}t}
\right)
\left(
1 -
\lambda\frac{\mathrm{d}\phi}{\mathrm{d}t}
\right).
\end{aligned} d t ′ d q i ′ = d t d q i ′ d t ′ d t ≈ d t d q i ′ ( d t d t ′ ) − 1 = ( d t d q i + λ d t d ψ i ) ( 1 + λ d t d ϕ ) − 1 ≈ ( d t d q i + λ d t d ψ i ) ( 1 − λ d t d ϕ ) .
Its derivative with respect to λ \lambda λ reads
d d λ d q i ′ d t ′ = d d λ [ ( d q i d t + λ d ψ i d t ) ( 1 − λ d ϕ d t ) ] = d d λ [ d q i d t + λ d ψ i d t − λ d q i d t d ϕ d t + O ( λ 2 ) ] = d ψ i d t − d q i d t d ϕ d t . \begin{aligned}
\frac{\mathrm{d}}{\mathrm{d}\lambda}\frac{\mathrm{d}q_i'}{\mathrm{d}t'}
&=
\frac{\mathrm{d}}{\mathrm{d}\lambda}
\left[
\left(
\frac{\mathrm{d}q_i}{\mathrm{d}t} +
\lambda\frac{\mathrm{d}\psi_i}{\mathrm{d}t}
\right)
\left(
1 -
\lambda\frac{\mathrm{d}\phi}{\mathrm{d}t}
\right)
\right]\\[3ex]
&=
\frac{\mathrm{d}}{\mathrm{d}\lambda}
\left[
\frac{\mathrm{d}q_i}{\mathrm{d}t} +
\lambda\frac{\mathrm{d}\psi_i}{\mathrm{d}t} -
\lambda\frac{\mathrm{d}q_i}{\mathrm{d}t}\frac{\mathrm{d}\phi}{\mathrm{d}t} +
\mathcal{O}(\lambda^2)
\right]\\[3ex]
&=
\frac{\mathrm{d}\psi_i}{\mathrm{d}t} - \frac{\mathrm{d}q_i}{\mathrm{d}t}\frac{\mathrm{d}\phi}{\mathrm{d}t}.
\end{aligned} d λ d d t ′ d q i ′ = d λ d [ ( d t d q i + λ d t d ψ i ) ( 1 − λ d t d ϕ ) ] = d λ d [ d t d q i + λ d t d ψ i − λ d t d q i d t d ϕ + O ( λ 2 ) ] = d t d ψ i − d t d q i d t d ϕ .
We repeat the action-symmetry equation and continue to reduce it with this new result:
0 = { [ ∑ i ∂ L ∂ q i ′ ψ i + ∑ i ( ∂ L ∂ q ˙ i ′ × d d λ d q i ′ d t ′ ) + ∂ L ∂ t ′ ϕ ] ( 1 + λ d ϕ d t ) + L d ϕ d t } λ = 0 = { [ ∑ i ∂ L ∂ q i ′ ψ i + ∑ i ( ∂ L ∂ q ˙ i ′ × ( d ψ i d t − d q i d t d ϕ d t ) ) + ∂ L ∂ t ′ ϕ ] ( 1 + λ d ϕ d t ) + L d ϕ d t } λ = 0 . \begin{aligned}
0
&= \left\{
\left[
\sum_i
\frac{\partial L}{\partial q'_i}
\psi_i +
\sum_i \left(
\frac{\partial L}{\partial \dot{q}'_i} \times
\frac{\mathrm{d}}{\mathrm{d} \lambda}
\frac{\mathrm{d}q'_i}{\mathrm{d} t'}
\right) +
\frac{\partial L}{\partial t'}
\phi
\right]
\left(
1+\lambda\frac{\mathrm{d}\phi}{\mathrm{d}t}
\right) +
L \frac{\mathrm{d}\phi}{\mathrm{d}t}
\right\}_{\lambda=0}\\[3ex]
&= \left\{
\left[
\sum_i
\frac{\partial L}{\partial q'_i}
\psi_i +
\sum_i \left(
\frac{\partial L}{\partial \dot{q}'_i} \times \left(
\frac{\mathrm{d}\psi_i}{\mathrm{d}t} -
\frac{\mathrm{d}q_i}{\mathrm{d}t}
\frac{\mathrm{d}\phi}{\mathrm{d}t}
\right)
\right) +
\frac{\partial L}{\partial t'}
\phi
\right]
\left(
1+\lambda\frac{\mathrm{d}\phi}{\mathrm{d}t}
\right) +
L \frac{\mathrm{d}\phi}{\mathrm{d}t}
\right\}_{\lambda=0}.
\end{aligned} 0 = { [ i ∑ ∂ q i ′ ∂ L ψ i + i ∑ ( ∂ q ˙ i ′ ∂ L × d λ d d t ′ d q i ′ ) + ∂ t ′ ∂ L ϕ ] ( 1 + λ d t d ϕ ) + L d t d ϕ } λ = 0 = { [ i ∑ ∂ q i ′ ∂ L ψ i + i ∑ ( ∂ q ˙ i ′ ∂ L × ( d t d ψ i − d t d q i d t d ϕ ) ) + ∂ t ′ ∂ L ϕ ] ( 1 + λ d t d ϕ ) + L d t d ϕ } λ = 0 .
This expression is finally ready to be evaluated at λ = 0 \lambda=0 λ = 0 . Note
that not only λ \lambda λ -terms vanish, but partial derivatives change to
their “unperturbed” equivalents,
This is perhaps another mathematical sin, though I would argue it is
of not such severity.
i.e.
lim λ → 0 ∂ ∂ q i ′ = ∂ ∂ q i lim λ → 0 ∂ ∂ q ˙ i ′ = ∂ ∂ q ˙ i lim λ → 0 ∂ ∂ t ′ = ∂ ∂ t . \begin{aligned}
\lim_{\lambda\to 0} \frac{\partial}{\partial q_i'} &=
\frac{\partial}{\partial q_i} \\[2ex]
\lim_{\lambda\to 0} \frac{\partial}{\partial \dot{q}_i'} &=
\frac{\partial}{\partial \dot{q}_i} \\[2ex]
\lim_{\lambda\to 0} \frac{\partial}{\partial t'} &=
\frac{\partial}{\partial t}.
\end{aligned} λ → 0 lim ∂ q i ′ ∂ λ → 0 lim ∂ q ˙ i ′ ∂ λ → 0 lim ∂ t ′ ∂ = ∂ q i ∂ = ∂ q ˙ i ∂ = ∂ t ∂ .
Thus the evaluation at λ = 0 \lambda=0 λ = 0 yields
0 = ∑ i ∂ L ∂ q i ψ i + ∑ i ( ∂ L ∂ q ˙ i × ( d ψ i d t − d q i d t d ϕ d t ) ) + ∂ L ∂ t ϕ + L d ϕ d t = ∑ i [ ∂ L ∂ q i ψ i + ∂ L ∂ q ˙ i × ( d ψ i d t − d q i d t d ϕ d t ) ] + ∂ L ∂ t ϕ + L d ϕ d t = ∑ i [ ∂ L ∂ q i ψ i + ∂ L ∂ q ˙ i d ψ i d t − ∂ L ∂ q ˙ i d q i d t d ϕ d t ] + ∂ L ∂ t ϕ + L d ϕ d t . \begin{aligned}
0
&=
\sum_i
\frac{\partial L}{\partial q_i}
\psi_i +
\sum_i \left(
\frac{\partial L}{\partial \dot{q}_i} \times \left(
\frac{\mathrm{d}\psi_i}{\mathrm{d}t} -
\frac{\mathrm{d}q_i}{\mathrm{d}t}
\frac{\mathrm{d}\phi}{\mathrm{d}t}
\right)
\right) +
\frac{\partial L}{\partial t}
\phi +
L \frac{\mathrm{d}\phi}{\mathrm{d}t}\\[3ex]
&=
\sum_i \left[
\frac{\partial L}{\partial q_i}
\psi_i +
\frac{\partial L}{\partial \dot{q}_i} \times \left(
\frac{\mathrm{d}\psi_i}{\mathrm{d}t} -
\frac{\mathrm{d}q_i}{\mathrm{d}t}
\frac{\mathrm{d}\phi}{\mathrm{d}t}
\right)
\right] +
\frac{\partial L}{\partial t}
\phi +
L \frac{\mathrm{d}\phi}{\mathrm{d}t}\\[3ex]
&=
\sum_i \left[
\frac{\partial L}{\partial q_i} \psi_i +
\frac{\partial L}{\partial \dot{q}_i}
\frac{\mathrm{d}\psi_i}{\mathrm{d}t} -
\frac{\partial L}{\partial \dot{q}_i}
\frac{\mathrm{d}q_i}{\mathrm{d}t}
\frac{\mathrm{d}\phi}{\mathrm{d}t}
\right] +
\frac{\partial L}{\partial t}
\phi +
L \frac{\mathrm{d}\phi}{\mathrm{d}t}.
\end{aligned} 0 = i ∑ ∂ q i ∂ L ψ i + i ∑ ( ∂ q ˙ i ∂ L × ( d t d ψ i − d t d q i d t d ϕ ) ) + ∂ t ∂ L ϕ + L d t d ϕ = i ∑ [ ∂ q i ∂ L ψ i + ∂ q ˙ i ∂ L × ( d t d ψ i − d t d q i d t d ϕ ) ] + ∂ t ∂ L ϕ + L d t d ϕ = i ∑ [ ∂ q i ∂ L ψ i + ∂ q ˙ i ∂ L d t d ψ i − ∂ q ˙ i ∂ L d t d q i d t d ϕ ] + ∂ t ∂ L ϕ + L d t d ϕ .
Invoking the Euler-Lagrange equation in the first term under the sum:
0 = ∑ i [ d d t ( ∂ L ∂ q ˙ i ) ψ i + ∂ L ∂ q ˙ i d ψ i d t − ∂ L ∂ q ˙ i d q i d t d ϕ d t ] + ∂ L ∂ t ϕ + L d ϕ d t , 0 =
\sum_i \left[
\frac{\mathrm{d}}{\mathrm{d}t}\left(
\frac{\partial L}{\partial \dot{q}_i}
\right) \psi_i +
\frac{\partial L}{\partial \dot{q}_i}
\frac{\mathrm{d}\psi_i}{\mathrm{d}t} -
\frac{\partial L}{\partial \dot{q}_i}
\frac{\mathrm{d}q_i}{\mathrm{d}t}
\frac{\mathrm{d}\phi}{\mathrm{d}t}
\right] +
\frac{\partial L}{\partial t}
\phi +
L \frac{\mathrm{d}\phi}{\mathrm{d}t}, 0 = i ∑ [ d t d ( ∂ q ˙ i ∂ L ) ψ i + ∂ q ˙ i ∂ L d t d ψ i − ∂ q ˙ i ∂ L d t d q i d t d ϕ ] + ∂ t ∂ L ϕ + L d t d ϕ ,
but now the first two terms under the sum can be combined through the
product rule:
0 = ∑ i [ d d t ( ∂ L ∂ q ˙ i ψ i ) − ∂ L ∂ q ˙ i d q i d t d ϕ d t ] + ∂ L ∂ t ϕ + L d ϕ d t = d d t [ ∑ i ∂ L ∂ q ˙ i ψ i ] + ( − ∑ i ∂ L ∂ q ˙ i d q i d t + L ) d ϕ d t + ∂ L ∂ t ϕ . \begin{aligned}
0 &=
\sum_i \left[
\frac{\mathrm{d}}{\mathrm{d}t}\left(
\frac{\partial L}{\partial \dot{q}_i}
\psi_i
\right) -
\frac{\partial L}{\partial \dot{q}_i}
\frac{\mathrm{d}q_i}{\mathrm{d}t}
\frac{\mathrm{d}\phi}{\mathrm{d}t}
\right] +
\frac{\partial L}{\partial t}
\phi +
L \frac{\mathrm{d}\phi}{\mathrm{d}t}\\[3ex]
&=
\frac{\mathrm{d}}{\mathrm{d}t} \left[
\sum_i
\frac{\partial L}{\partial \dot{q}_i}
\psi_i
\right] +
\left(
-\sum_i\frac{\partial L}{\partial \dot{q}_i}
\frac{\mathrm{d}q_i}{\mathrm{d}t} + L
\right)
\frac{\mathrm{d}\phi}{\mathrm{d}t} +
\frac{\partial L}{\partial t}
\phi.
\end{aligned} 0 = i ∑ [ d t d ( ∂ q ˙ i ∂ L ψ i ) − ∂ q ˙ i ∂ L d t d q i d t d ϕ ] + ∂ t ∂ L ϕ + L d t d ϕ = d t d [ i ∑ ∂ q ˙ i ∂ L ψ i ] + ( − i ∑ ∂ q ˙ i ∂ L d t d q i + L ) d t d ϕ + ∂ t ∂ L ϕ .
Finally, we note that the Hamiltonian of the system is defined
H : = ∑ i ( ∂ L / q ˙ i ) q ˙ i − L H:=\sum_i (\partial L/\dot{q}_i)\dot{q}_i-L H := ∑ i ( ∂ L / q ˙ i ) q ˙ i − L , and that
d H / d t = − ∂ L / ∂ t \mathrm{d}H/\mathrm{d}t=-\partial L/\partial t d H / d t = − ∂ L / ∂ t . This leads to
0 = d d t [ ∑ i ∂ L ∂ q ˙ i ψ i ] − H d ϕ d t − d H d t ϕ = d d t [ ∑ i ∂ L ∂ q ˙ i ψ i ] − d d t [ H ϕ ] , \begin{aligned}
0 &=
\frac{\mathrm{d}}{\mathrm{d}t} \left[
\sum_i
\frac{\partial L}{\partial \dot{q}_i}
\psi_i
\right] -
H\frac{\mathrm{d}\phi}{\mathrm{d}t} -
\frac{\mathrm{d} H}{\mathrm{d} t}
\phi \\[3ex]
&=
\frac{\mathrm{d}}{\mathrm{d}t} \left[
\sum_i
\frac{\partial L}{\partial \dot{q}_i}
\psi_i
\right] -
\frac{\mathrm{d}}{\mathrm{d}t}\left[
H\phi
\right],
\end{aligned} 0 = d t d [ i ∑ ∂ q ˙ i ∂ L ψ i ] − H d t d ϕ − d t d H ϕ = d t d [ i ∑ ∂ q ˙ i ∂ L ψ i ] − d t d [ H ϕ ] ,
implying that the quantity
Q : = ∑ i ∂ L ∂ q ˙ i ψ i − H ϕ ≡ ∑ i p i ψ i − H ϕ \begin{aligned}
Q&:=
\sum_i
\frac{\partial L}{\partial \dot{q}_i}
\psi_i
-
H\phi\\[3ex]
&\equiv
\sum_i
p_i
\psi_i
-
H\phi
\end{aligned} Q := i ∑ ∂ q ˙ i ∂ L ψ i − H ϕ ≡ i ∑ p i ψ i − H ϕ
is conserved. This is the Noether theorem.