Atanas K. Stefanov

A guided derivation of the Noether theorem


In my UCL Galaxy Dynamics course (PHAS0065), I struggled with the derivation of the Noether theorem for quite a while. What I present here is just a step-by-step solution of the treatment given in Dr Ralph Schönrich's lecture notes of PHAS0065. This treatment is in the German theoretical physics tradition, and is particularly contained in "Mechanik: Lehrbuch zur Theoretischen Physik" by Torsten Fließbach. All errors in this solution are my own.

Consider a dynamical system with generalised space coordinates qRi\underline{q}\in\mathbb{R}^i, a time coordinate tt and an associated Lagrangian LL. Let there be two perturbing maps of the form

q:=q+λψ(q,q˙,t)t:=t+λϕ(q,q˙,t)\left|\begin{array}{l} \underline{q}':= \underline{q}+\lambda\underline{\psi}(\underline{q},\underline{\dot{q}},t)\\[1ex] t':= t+\lambda\phi(\underline{q},\underline{\dot{q}},t) \end{array}\right.

with λR\lambda \in \mathbb{R}. We require symmetry of action:

t1t2L(q,q˙,t)dt=t1t2L(q,q˙,t)dt, \int^{t_2}_{t_1} L \left( \underline{q},\underline{\dot{q}},t \right)\mathrm{d}t = \int^{t_2}_{t_1} L \left( \underline{q}',\underline{\dot{q}}',t' \right)\mathrm{d}t',

where we define q˙:=dq/dt\underline{\dot{q}}':=\mathrm{d}\underline{q}'/\mathrm{d}t' for the rest of the derivation. Taylor-expanding the right-hand side gives

t1t2L(q,q˙,t)dt=t1t2L(q,q˙,t)dt+λt1t2ddλ[L(q,q˙,t)×dtdt]λ=0dt+O(λ2), \cancel{\int^{t_2}_{t_1} L \left( \underline{q},\underline{\dot{q}},t \right)\mathrm{d}t} = \cancel{\int^{t_2}_{t_1} L \left( \underline{q},\underline{\dot{q}},t \right)\mathrm{d}t} + \lambda \int^{t_2}_{t_1} \frac{\mathrm{d}}{\mathrm{d}\lambda} \left[ L \left( \underline{q}',\underline{\dot{q}}',t' \right)\times\frac{\mathrm{d}t'}{\mathrm{d}t} \right]_{\lambda=0}\mathrm{d}t + \mathcal{O}(\lambda^2),

which holds for all λ\lambda if and only if

0={ddλ[L(q,q˙,t)×dtdt]}λ=0. 0 = \left\{ \frac{\mathrm{d}}{\mathrm{d}\lambda} \left[ L \left( \underline{q}',\underline{\dot{q}}',t' \right)\times\frac{\mathrm{d}t'}{\mathrm{d}t} \right] \right\}_{\lambda=0}.

From the definition of tt',

dtdt=1+λdϕdt, \frac{\mathrm{d}t'}{\mathrm{d}t} = 1+\lambda\frac{\mathrm{d}\phi}{\mathrm{d}t},

which further reduces the action equation to

0={ddλ[L(1+λdϕdt)]}λ=0={dLdλ(1+λdϕdt)+Ldϕdt}λ=0. \begin{aligned} 0 &= \left\{ \frac{\mathrm{d}}{\mathrm{d}\lambda} \left[ L\left( 1+\lambda\frac{\mathrm{d}\phi}{\mathrm{d}t} \right) \right] \right\}_{\lambda=0}\\[3ex] &= \left\{ \frac{\mathrm{d}L}{\mathrm{d}\lambda}\left( 1+\lambda\frac{\mathrm{d}\phi}{\mathrm{d}t} \right) + L \frac{\mathrm{d}\phi}{\mathrm{d}t} \right\}_{\lambda=0}. \end{aligned}

We then expand dL/dλ\mathrm{d}L/\mathrm{d}\lambda by the chain rule, keeping in mind that the Lagrangian is a function of the perturbed coordinates:

0={[iLqidqidλ+iLq˙idq˙idλ+Ltdtdλ+Lλ](1+λdϕdt)+Ldϕdt}λ=0={[iLqiψi+i(Lq˙i×ddλdqidt)+Ltϕ](1+λdϕdt)+Ldϕdt}λ=0, \begin{aligned} 0 &= \left\{ \left[ \sum_i \frac{\partial L}{\partial q'_i} \frac{\mathrm{d} q'_i}{\mathrm{d} \lambda} + \sum_i \frac{\partial L}{\partial \dot{q}'_i} \frac{\mathrm{d} \dot{q}'_i}{\mathrm{d} \lambda} + \frac{\partial L}{\partial t'} \frac{\mathrm{d} t'}{\mathrm{d} \lambda} + \cancel{ \frac{\partial L}{\partial \lambda} } \right] \left( 1+\lambda\frac{\mathrm{d}\phi}{\mathrm{d}t} \right) + L \frac{\mathrm{d}\phi}{\mathrm{d}t} \right\}_{\lambda=0}\\[3ex] &= \left\{ \left[ \sum_i \frac{\partial L}{\partial q'_i} \psi_i + \sum_i \left( \frac{\partial L}{\partial \dot{q}'_i} \times \frac{\mathrm{d}}{\mathrm{d} \lambda} \frac{\mathrm{d}q'_i}{\mathrm{d} t'} \right) + \frac{\partial L}{\partial t'} \phi \right] \left( 1+\lambda\frac{\mathrm{d}\phi}{\mathrm{d}t} \right) + L \frac{\mathrm{d}\phi}{\mathrm{d}t} \right\}_{\lambda=0}, \end{aligned}

where in the first line L/λ\partial L/\partial \lambda vanishes, since LL is unperturbed; and in the second line we used the definitions of qiq'_i, q˙i\dot{q}'_i and tt'. We now make the following approximations: While the fourth-line approximation is the standard binomial approximation, the second-line one (i.e. the act of “flipping” the derivative) is dubious, and I leave it with no formal justification.

dqidt=dqidtdtdtdqidt(dtdt)1=(dqidt+λdψidt)(1+λdϕdt)1(dqidt+λdψidt)(1λdϕdt). \begin{aligned} \frac{\mathrm{d}q_i'}{\mathrm{d}t'} &= \frac{\mathrm{d}q_i'}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}t'}\\[2ex] &\approx \frac{\mathrm{d}q_i'}{\mathrm{d}t} \left( \frac{\mathrm{d}t'}{\mathrm{d}t} \right)^{-1}\\[2ex] &= \left( \frac{\mathrm{d}q_i}{\mathrm{d}t} + \lambda\frac{\mathrm{d}\psi_i}{\mathrm{d}t} \right) \left( 1 + \lambda\frac{\mathrm{d}\phi}{\mathrm{d}t} \right)^{-1}\\[2ex] &\approx \left( \frac{\mathrm{d}q_i}{\mathrm{d}t} + \lambda\frac{\mathrm{d}\psi_i}{\mathrm{d}t} \right) \left( 1 - \lambda\frac{\mathrm{d}\phi}{\mathrm{d}t} \right). \end{aligned}

Its derivative with respect to λ\lambda reads

ddλdqidt=ddλ[(dqidt+λdψidt)(1λdϕdt)]=ddλ[dqidt+λdψidtλdqidtdϕdt+O(λ2)]=dψidtdqidtdϕdt. \begin{aligned} \frac{\mathrm{d}}{\mathrm{d}\lambda}\frac{\mathrm{d}q_i'}{\mathrm{d}t'} &= \frac{\mathrm{d}}{\mathrm{d}\lambda} \left[ \left( \frac{\mathrm{d}q_i}{\mathrm{d}t} + \lambda\frac{\mathrm{d}\psi_i}{\mathrm{d}t} \right) \left( 1 - \lambda\frac{\mathrm{d}\phi}{\mathrm{d}t} \right) \right]\\[3ex] &= \frac{\mathrm{d}}{\mathrm{d}\lambda} \left[ \frac{\mathrm{d}q_i}{\mathrm{d}t} + \lambda\frac{\mathrm{d}\psi_i}{\mathrm{d}t} - \lambda\frac{\mathrm{d}q_i}{\mathrm{d}t}\frac{\mathrm{d}\phi}{\mathrm{d}t} + \mathcal{O}(\lambda^2) \right]\\[3ex] &= \frac{\mathrm{d}\psi_i}{\mathrm{d}t} - \frac{\mathrm{d}q_i}{\mathrm{d}t}\frac{\mathrm{d}\phi}{\mathrm{d}t}. \end{aligned}

We repeat the action-symmetry equation and continue to reduce it with this new result:

0={[iLqiψi+i(Lq˙i×ddλdqidt)+Ltϕ](1+λdϕdt)+Ldϕdt}λ=0={[iLqiψi+i(Lq˙i×(dψidtdqidtdϕdt))+Ltϕ](1+λdϕdt)+Ldϕdt}λ=0. \begin{aligned} 0 &= \left\{ \left[ \sum_i \frac{\partial L}{\partial q'_i} \psi_i + \sum_i \left( \frac{\partial L}{\partial \dot{q}'_i} \times \frac{\mathrm{d}}{\mathrm{d} \lambda} \frac{\mathrm{d}q'_i}{\mathrm{d} t'} \right) + \frac{\partial L}{\partial t'} \phi \right] \left( 1+\lambda\frac{\mathrm{d}\phi}{\mathrm{d}t} \right) + L \frac{\mathrm{d}\phi}{\mathrm{d}t} \right\}_{\lambda=0}\\[3ex] &= \left\{ \left[ \sum_i \frac{\partial L}{\partial q'_i} \psi_i + \sum_i \left( \frac{\partial L}{\partial \dot{q}'_i} \times \left( \frac{\mathrm{d}\psi_i}{\mathrm{d}t} - \frac{\mathrm{d}q_i}{\mathrm{d}t} \frac{\mathrm{d}\phi}{\mathrm{d}t} \right) \right) + \frac{\partial L}{\partial t'} \phi \right] \left( 1+\lambda\frac{\mathrm{d}\phi}{\mathrm{d}t} \right) + L \frac{\mathrm{d}\phi}{\mathrm{d}t} \right\}_{\lambda=0}. \end{aligned}

This expression is finally ready to be evaluated at λ=0\lambda=0. Note that not only λ\lambda-terms vanish, but partial derivatives change to their “unperturbed” equivalents, This is perhaps another mathematical sin, though I would argue it is of not such severity. i.e.

limλ0qi=qilimλ0q˙i=q˙ilimλ0t=t. \begin{aligned} \lim_{\lambda\to 0} \frac{\partial}{\partial q_i'} &= \frac{\partial}{\partial q_i} \\[2ex] \lim_{\lambda\to 0} \frac{\partial}{\partial \dot{q}_i'} &= \frac{\partial}{\partial \dot{q}_i} \\[2ex] \lim_{\lambda\to 0} \frac{\partial}{\partial t'} &= \frac{\partial}{\partial t}. \end{aligned}

Thus the evaluation at λ=0\lambda=0 yields

0=iLqiψi+i(Lq˙i×(dψidtdqidtdϕdt))+Ltϕ+Ldϕdt=i[Lqiψi+Lq˙i×(dψidtdqidtdϕdt)]+Ltϕ+Ldϕdt=i[Lqiψi+Lq˙idψidtLq˙idqidtdϕdt]+Ltϕ+Ldϕdt. \begin{aligned} 0 &= \sum_i \frac{\partial L}{\partial q_i} \psi_i + \sum_i \left( \frac{\partial L}{\partial \dot{q}_i} \times \left( \frac{\mathrm{d}\psi_i}{\mathrm{d}t} - \frac{\mathrm{d}q_i}{\mathrm{d}t} \frac{\mathrm{d}\phi}{\mathrm{d}t} \right) \right) + \frac{\partial L}{\partial t} \phi + L \frac{\mathrm{d}\phi}{\mathrm{d}t}\\[3ex] &= \sum_i \left[ \frac{\partial L}{\partial q_i} \psi_i + \frac{\partial L}{\partial \dot{q}_i} \times \left( \frac{\mathrm{d}\psi_i}{\mathrm{d}t} - \frac{\mathrm{d}q_i}{\mathrm{d}t} \frac{\mathrm{d}\phi}{\mathrm{d}t} \right) \right] + \frac{\partial L}{\partial t} \phi + L \frac{\mathrm{d}\phi}{\mathrm{d}t}\\[3ex] &= \sum_i \left[ \frac{\partial L}{\partial q_i} \psi_i + \frac{\partial L}{\partial \dot{q}_i} \frac{\mathrm{d}\psi_i}{\mathrm{d}t} - \frac{\partial L}{\partial \dot{q}_i} \frac{\mathrm{d}q_i}{\mathrm{d}t} \frac{\mathrm{d}\phi}{\mathrm{d}t} \right] + \frac{\partial L}{\partial t} \phi + L \frac{\mathrm{d}\phi}{\mathrm{d}t}. \end{aligned}

Invoking the Euler-Lagrange equation in the first term under the sum:

0=i[ddt(Lq˙i)ψi+Lq˙idψidtLq˙idqidtdϕdt]+Ltϕ+Ldϕdt, 0 = \sum_i \left[ \frac{\mathrm{d}}{\mathrm{d}t}\left( \frac{\partial L}{\partial \dot{q}_i} \right) \psi_i + \frac{\partial L}{\partial \dot{q}_i} \frac{\mathrm{d}\psi_i}{\mathrm{d}t} - \frac{\partial L}{\partial \dot{q}_i} \frac{\mathrm{d}q_i}{\mathrm{d}t} \frac{\mathrm{d}\phi}{\mathrm{d}t} \right] + \frac{\partial L}{\partial t} \phi + L \frac{\mathrm{d}\phi}{\mathrm{d}t},

but now the first two terms under the sum can be combined through the product rule:

0=i[ddt(Lq˙iψi)Lq˙idqidtdϕdt]+Ltϕ+Ldϕdt=ddt[iLq˙iψi]+(iLq˙idqidt+L)dϕdt+Ltϕ. \begin{aligned} 0 &= \sum_i \left[ \frac{\mathrm{d}}{\mathrm{d}t}\left( \frac{\partial L}{\partial \dot{q}_i} \psi_i \right) - \frac{\partial L}{\partial \dot{q}_i} \frac{\mathrm{d}q_i}{\mathrm{d}t} \frac{\mathrm{d}\phi}{\mathrm{d}t} \right] + \frac{\partial L}{\partial t} \phi + L \frac{\mathrm{d}\phi}{\mathrm{d}t}\\[3ex] &= \frac{\mathrm{d}}{\mathrm{d}t} \left[ \sum_i \frac{\partial L}{\partial \dot{q}_i} \psi_i \right] + \left( -\sum_i\frac{\partial L}{\partial \dot{q}_i} \frac{\mathrm{d}q_i}{\mathrm{d}t} + L \right) \frac{\mathrm{d}\phi}{\mathrm{d}t} + \frac{\partial L}{\partial t} \phi. \end{aligned}

Finally, we note that the Hamiltonian of the system is defined H:=i(L/q˙i)q˙iLH:=\sum_i (\partial L/\dot{q}_i)\dot{q}_i-L, and that dH/dt=L/t\mathrm{d}H/\mathrm{d}t=-\partial L/\partial t. This leads to

0=ddt[iLq˙iψi]HdϕdtdHdtϕ=ddt[iLq˙iψi]ddt[Hϕ], \begin{aligned} 0 &= \frac{\mathrm{d}}{\mathrm{d}t} \left[ \sum_i \frac{\partial L}{\partial \dot{q}_i} \psi_i \right] - H\frac{\mathrm{d}\phi}{\mathrm{d}t} - \frac{\mathrm{d} H}{\mathrm{d} t} \phi \\[3ex] &= \frac{\mathrm{d}}{\mathrm{d}t} \left[ \sum_i \frac{\partial L}{\partial \dot{q}_i} \psi_i \right] - \frac{\mathrm{d}}{\mathrm{d}t}\left[ H\phi \right], \end{aligned}

implying that the quantity

Q:=iLq˙iψiHϕipiψiHϕ\begin{aligned} Q&:= \sum_i \frac{\partial L}{\partial \dot{q}_i} \psi_i - H\phi\\[3ex] &\equiv \sum_i p_i \psi_i - H\phi \end{aligned}

is conserved. This is the Noether theorem.